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ABSTRACT: This paper presents the study of transient thermal stresses in a thick circular plate subjected to 

asymmetric temperature field on the Axial direction of the cylindrical co-ordinate system. Initially the plate is 

kept at zero temperature and an Arbirary heat flux is prescribed over the upper surface while lower surface 

maintain at zero degree with its circular boundary insulated. The displacement potential and thermal stresses 

are obtained by using integral transforms techniques. 
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I. INTRODUCTION 

During the second half of the Twentieth century, non isothermal problem of the theory of elasticity became 

increasingly important this is due to their wide application in diverse fields. The high  relocation of modern aircraft 
give rise to aerodynamic heating, which produces intense thermal stresses that reduce the strength of the aircraft 

structure.  

The initial boundary value problem of heat conduction is of considerable technological importance. Graya and 

Kozlowski (1982), investigated one dimensional transient thermoelastic problem and derived the heating 

temperature and heat flux on the surface of isotropic infinite slab [1]. Noda (1983) studied transient thermal stress 

problem in a finite circular transversely isotropic solid cylinder subjected to an asymmetrical temperature 

distribution on a cylindrical surface [2]. The stress fields are found by use of potential functions method. Deshmukh 

(1996) solved an inverse problem of thermoelasticity in a thin circular plate by determining the temperature on the 

curved surface of the plate, displacement and thermal stresses in the plate by using quasis-static approach by 

employing integral transform techniques [3].  

Khobragade and Kumar (2011) determined coupled thermal stresses in a axisymmetric hollow cylinder [4]. 

Recently, Kumar and Khobragade (2012) found thermal stresses in a thin object by using Integral transform methods 
for inverse problem of heat conduction with known boundary [5].  

This paper deals with the study of transient thermal stresses in a thick circular plate subjected to a arbitrary heat 

conduction at upper surface while the lower surface of the circular plate kept at zero temperature and its circular 

boundary is insulated. Initially thick circular plate kept at zero temperature.The governing heat condition equation is 

solved by using integral transform technique. 

This paper contains, new and novel contribution of thermal stresses in quasi-static thick plate under steady state. The 

result presented here will be more useful in engineering problem particularly in the determination of the state of 

strain in thick circular plate constituting foundations of containers for hot gases or liquids, in the foundations for 

furnaces etc.  

II. FORMULATION OF PROBLEMS 

Let usconsider a quasi static thick circular plate of radius a and thickness 2h occupying the region 0 < r <  a,

 

h < z 

< h as shown in Fig. 1. Also it is assumed that plate be subjected to asymmetric temperature field on the Axial 

direction of the cylindrical co-ordinate system. Initially the plate is kept at zero temperature the Arbirary heat flux is 

prescribed over the upper surface  (z = h) and lower surface (z = -h) maintain at zero degree while the fixed circular 

edge (r = a) thermally insulated. Assume the upper and lower surface of the thick circular plate are traction free 

under these prescribed condition transient thermal stresses are required to be determined.  
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Fig. 1. Configuration of the thick circular plate. 

A. Heat Conduction 

The temperature of the plate at t satisfies the heat conduction equation [6] 
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and the initial condition  

0=θ    at  t= 0                                               (5) 

Where k thermal diffusivity of the material of the plate.  

B. Thermal Stresses and Displacement Potential  

The differential equation governing the displacement potential function    φ(r,z,t) is given  
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Where k is restraint coefficient and temperature change 
i

θθτ −=  is the initial temperature displacement function 

φ is known as Goodier’s thermoelastic displacement Potential.  
The displacement function in the cylindrical co-ordinate system are represented by Michell’s function  

Michell’s function M must satisfy    022 =∇∇ M                                                           (7)  
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the component of the stresses are represented by the thermoelastic displacement potential φ and Michell’s function 
M  
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G and v are shear modulus and Poisson’s ratio respectively for traction free surface stresses function. 
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The equation (1) to (15) constitute Mathematical formulation of the problem. 

III. SOLUTION OF THE PROBLEM 

On applying the Laplace and Hankel transform technique and their inversions to the equation (1) and using the 

equations (1) to (5) one obtain, 
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Where p is Laplace transform parameter.  

And Pm be the root of      2 2 2

1
2 . 2

n n n

P P P
h Sinh h C osh h

k k k
α α α

     
+ + + +    

      

 

 

A. Goodiers thermoelastic Displacement Potential φ. 

Assuming the displacement function φ (r,z,t) which satisfy (6) 
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Now let assume Michell’s function M which satisfy the condition (7) 
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Hn and Rn are Arbitrary Constant.  
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IV. DISPLACEMENT AND THERMAL STRESSES DETERMINATION 

Now using the equation (16) to (18) in the equation (9) and (10) one obtain the expression for displacement as,  
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Now using the equation (16) to (18) in the equation (11) to (14) one obtain the expression for stresses as, 
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V. SPECIAL CASE 

Setting f(r) = (r2 – a2)2                                                                                                                                                                  (27) 

Applying finite Hankel transform to the equation (27) one obtain  
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VI. CONCLUSION 

In this paper, we have discussed completely the transient thermal stresses in a thick circular plate subjected to 

asymmetric temperature field on the Axial direction of the cylindrical co-ordinate system. The Laplace and Hankel 

transforms technique are used to obtain the numerical results. The temperature, displacement and thermal stresses 

are obtained may be applied to the design of useful structures or machines in engineering applications. 
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