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ABSTRACT: This paper presents the study of transient thermal stresses in a thick circular plate subjected to
asymmetric temperature field on the Axial direction of the cylindrical co-ordinate system. Initially the plate is
kept at zero temperature and an Arbirary heat flux is prescribed over the upper surface while lower surface
maintain at zero degree with its circular boundary insulated. The displacement potential and thermal stresses
are obtained by using integral transforms techniques.
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I. INTRODUCTION

During the second half of the Twentieth century, non isothermal problem of the theory of elasticity became
increasingly important this is due to their wide application in diverse fields. The high relocation of modern aircraft
give rise to aerodynamic heating, which produces intense thermal stresses that reduce the strength of the aircraft
structure.

The initial boundary value problem of heat conduction is of considerable technological importance. Graya and
Kozlowski (1982), investigated one dimensional transient thermoelastic problem and derived the heating
temperature and heat flux on the surface of isotropic infinite slab [1]. Noda (1983) studied transient thermal stress
problem in a finite circular transversely isotropic solid cylinder subjected to an asymmetrical temperature
distribution on a cylindrical surface [2]. The stress fields are found by use of potential functions method. Deshmukh
(1996) solved an inverse problem of thermoelasticity in a thin circular plate by determining the temperature on the
curved surface of the plate, displacement and thermal stresses in the plate by using quasis-static approach by
employing integral transform techniques [3].

Khobragade and Kumar (2011) determined coupled thermal stresses in a axisymmetric hollow cylinder [4].
Recently, Kumar and Khobragade (2012) found thermal stresses in a thin object by using Integral transform methods
for inverse problem of heat conduction with known boundary [5].

This paper deals with the study of transient thermal stresses in a thick circular plate subjected to a arbitrary heat
conduction at upper surface while the lower surface of the circular plate kept at zero temperature and its circular
boundary is insulated. Initially thick circular plate kept at zero temperature. The governing heat condition equation is
solved by using integral transform technique.

This paper contains, new and novel contribution of thermal stresses in quasi-static thick plate under steady state. The
result presented here will be more useful in engineering problem particularly in the determination of the state of
strain in thick circular plate constituting foundations of containers for hot gases or liquids, in the foundations for
furnaces etc.

II. FORMULATION OF PROBLEMS

Let usconsider a quasi static thick circular plate of radius a and thickness 2k occupying the region 0 < r < a, h <z
< h as shown in Fig. 1. Also it is assumed that plate be subjected to asymmetric temperature field on the Axial
direction of the cylindrical co-ordinate system. Initially the plate is kept at zero temperature the Arbirary heat flux is
prescribed over the upper surface (z = ) and lower surface (z = -4) maintain at zero degree while the fixed circular
edge (r = a) thermally insulated. Assume the upper and lower surface of the thick circular plate are traction free
under these prescribed condition transient thermal stresses are required to be determined.



Kumar 61

N
—>@
N
I
i
L AN
P8
g

g=0
Fig. 1. Configuration of the thick circular plate.

A. Heat Conduction
The temperature of the plate at 7 satisfies the heat conduction equation [6]
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Where k thermal diffusivity of the material of the plate.

B. Thermal Stresses and Displacement Potential
The differential equation governing the displacement potential function ¢(r,z,t) is given

3¢ 1039 0%
- =k (6)
or? * r or * 977 4

Where k is restraint coefficient and temperature change 7= @ — 6, is the initial temperature displacement function

¢ is known as Goodier’s thermoelastic displacement Potential.
The displacement function in the cylindrical co-ordinate system are represented by Michell’s function
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the component of the stresses are represented by the thermoelastic displacement potential ¢ and Michell’s function
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The equation (1) to (15) constitute Mathematical formulation of the problem.

II1. SOLUTION OF THE PROBLEM

On applying the Laplace and Hankel transform technique and their inversions to the equation (1) and using the
equations (D) to (5) one obtain,
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Where p is Laplace transform parameter.
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Now let assume Michell’s function M which satisfy the condition (7)
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H, and R, are Arbitrary Constant.
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IV. DISPLACEMENT AND THERMAL STRESSES DETERMINATION

Now using the equation (16) to (18) in the equation (9) and (10) one obtain the expression for displacement as,
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Now using the equation (16) to (18) in the equation (11) to (14) one obtain the expression for stresses as,
206Gk & f (@) ( Ty (anr)]
Oyr = a,Jog(a,r)- ———=
rr az/l nZZI J(%(O{na) n 0( n ) -

ka2 + 5 sinn| 2n a2 + T (o 4n)
Kk Kk ePml _1
2
4h
2hCovh{2h,,a +Pm}<2hh1+1>+2h\/a +om Smh{Zh"a,%+2"} (4n% —1)a? + kpm

_Ki 2?(an)‘]0(anr)

n=1 P J(% (ana)

k‘[aj+i.Sinh 2h 0{3+i(z+h)
k k
[ .. P, [ .. P,
2h.cos/{2h o)+ . }(2/1/1 +1)+ Zh\/a o Sml{zh a) + . }

> J
+y a’H, [anJo (an)—@]c“h[an (z+ h)}+a,%Rn

(¢r-1)



Kumar

<2vanJ0 (a,r).Cosh [an (z+ h)}.,.{anjo (a,r)- J1 (a’nl’)j

r

(Cosh[an(Z+h)+:|05n(2+h)-5inh[an(Z+h)])> 1)

B 2QGk{ = f(a,)d (a,r)
Ogo =

a’i n=1 pm"]g (ana)'r

(=, ko Jo2 + L sinh| 2n Ja2 + T (24 1)
k k epmt_l
2
2h.Cosh{2h /a3+12”}<2hh1+1>+2h /aﬁ+2”.$inh{2h /a’%?} (4;,%1)0:3#”‘%

- 27(“71) Jo (anr)
n=1 Pm ‘I(% (0! a)

k. |o? i Smh{Zh la2 + Zm (z+h)}
2h.C0sh{2h la2 + Zm. }<2hhl+1>+2h\/a + ]:1 Smh{Zh o2 +I;€ }

M]Cosh [a, (z+h)]+

-K

1)

+a,%H,,[ ;

>R, <2va,,10 (@,r)-Cosh[a, (z+ h)]+(M][Cosh[an (z+h)]+a, (z+h)Sinh[ a, (z+ h)ﬂ>

(22)

o z(zQGkHi 7 (ay) o (a,r)

a’ n=1 J(% (ana)

20 (2 PV o 2, Py
4h°k o+ Sinh| 2h an+7(z+h) (epmt_l)

2
2hCosh{2h, la? + 2"}(2%1 +1)+2h, /a,% +I;Z’1.Sinh{2h, a2 +I;ﬂ {(4;,2 _1)a,% +4h%

_i T(Qn)JO (anr)

n=1 pmJO2 (ana)

k‘,a3+i’”.5inh{2h‘/a3+i’”(z+h)}
a2 }<2hh1+1>+2h‘/a + I;" th{

—i (ZSH”JO (a”r).CashI:a” (z+h)}+

lipk } (erm-1)

2h.C0sh|:

i alr,J, ((an)<(1— 2v).C0sh[(ln (z+ h)]— a, (z+ h).Sinh[(ln (z+ h)]>} 23)

64



Kumar 65

o - (2Qiji f(a,) I (a,r)

J02 (ana)

2, 5 / 2, B
(—a,,)ztha,, +Z’ﬂ.Cosh{2h a; +I:”(z+h)} (epmt _1)
2hCosh.{2h,/a§+};:”}<2hh +1)+2h |2 +-m Sznh{Qh,/a +};< } {(4/12_1) 2+ 4hkpm}

+i ajH,Jy(a,r).Coshla, (z+h)]-
=1

i R,y (@yr)(2v.Sinh[ @, (z+h)]+ @, (z+h) Cosh[a, (z+h)])}
n=1

(24)
where
k /a,%+P’”.Sinh{2h /a,%+Pm}(er’—1)
1 k k
=3 3 P
0 (@) | 2 cosh. {Qh‘/a +im }<2hhl+1>+2h a2 + Lo Sznh{Qh‘/a + /ﬂ
(25)
1 . -1
(4h2 —1)a,§ +4h”m}
k
R =0 (26)
V. SPECIAL CASE
Setting f(r) = (1* — a%)* (27)
Applying finite Hankel transform to the equation (27) one obtain
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VI. CONCLUSION

In this paper, we have discussed completely the transient thermal stresses in a thick circular plate subjected to
asymmetric temperature field on the Axial direction of the cylindrical co-ordinate system. The Laplace and Hankel
transforms technique are used to obtain the numerical results. The temperature, displacement and thermal stresses

are obtained may be applied to the design of useful structures or machines in engineering applications.
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